МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ИАТЭ НИЯУ МИФИ)

ИНСТИТУТ ОБЩЕЙ ПРОФЕССИОНАЛЬНОЙ ПОДГОТОВКИ Кафедра Высшей математики

Одобрено на заседании Ученого совета ИАТЭ НИЯУ МИФИ Протокол от 24.04.2023 No 23.4

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

Дифференциальные и интегральные уравнения
для направления подготовки
An impubition float of obtain
4. 0. 0
12.03.01 Приборостроение
Образоратані ная программа:
Образовательная программа:
Приборы и методы контроля качества и диагностики
F 11 F 1 1/1 F 1 1 1 F 1 1 1 1 1 1 1 1 1

Форма обучения: заочная

Область применения

Фонд оценочных средств (ФОС) – является неотъемлемой частью учебно-методического комплекса учебной дисциплины «Дифференциальные и интегральные уравнения» и предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу данной дисциплины.

Цели и задачи фонда оценочных средств

Целью Фонда оценочных средств является установление соответствия уровня подготовки обучающихся требованиям федерального государственного образовательного стандарта.

Для достижения поставленной цели Фондом оценочных средств по дисциплине «Дифференциальные и интегральные уравнения» решаются следующие задачи:

- -контроль и управление процессом приобретения обучающимися знаний, умений и навыков предусмотренных в рамках данного курса;
- -контроль и оценка степени освоения компетенций предусмотренных в рамках данного курса;
- -обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование традиционных и внедрение инновационных методов обучения в образовательный процесс в рамках данного курса.

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

1.1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения ООП бакалавриата обучающийся должен овладеть следующими результатами обучения по дисциплине:

Коды компетенций	Результаты освоения ООП Содержание компетенций*	Перечень планируемых результатов обучения по дисциплине**
ОПК-1	Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности	Знать: основные методы дифференциального и интегрального исчисления функций одной переменной, основные понятия и методы дифференциального исчисления функций нескольких переменных, теорию числовых и функциональных рядов. Уметь:применять математические методы, модели и законы для решения практических задач. Владеть: математическим аппаратом и навыками использования современных подходов и методов математики к описанию, анализу, теоретическому и экспериментальному исследованию, моделированию природных явлений и процессов в объеме, необходимом для использования в обучении и профессиональной деятельности.

1.2. Этапы формирования компетенций в процессе освоения ООП бакалавриата

Компоненты компетенций, как правило, формируются при изучении нескольких дисциплин, а также в немалой степени в процессе прохождения практик, НИР и во время самостоятельной работы обучающегося. Выполнение и защита ВКР являются видом учебной деятельности, который завершает процесс формирования компетенций.

Место дисциплины и соответствующий этап формирования компетенций в целостном процессе подготовки по образовательной программе можно определить по матрице компетенций, которая приводится в Приложении.

Этапы формирования компетенции в процессе освоения дисциплины:

- **начальный** этап на этом этапе формируются знаниевые и инструментальные основы компетенции, осваиваются основные категории, формируются базовые умения. Студент воспроизводит термины, факты, методы, понятия, принципы и правила; решает учебные задачи по образцу;
- **основной** этап знания, умения, навыки, обеспечивающие формирование компетенции, значительно возрастают, но еще не достигают итоговых значений. На этом этапе студент осваивает аналитические действия с предметными знаниями по дисциплине, способен самостоятельно решать учебные задачи, внося коррективы в алгоритм действий, осуществляя коррекцию в ходе работы, переносит знания и умения на новые условия;

- **завершающий** этап — на этом этапе студент достигает итоговых показателей по заявленной компетенции, то есть осваивает весь необходимый объем знаний, овладевает всеми умениями и навыками в сфере заявленной компетенции. Он способен использовать эти знания, умения, навыки при решении задач повышенной сложности и в нестандартных условиях.

Этапы формирования компетенций в ходе освоения дисциплины отражаются в тематическом плане (см.п. 4 рабочей программы дисциплины).

1.3. Паспорт фонда оценочных средств по дисциплине

No	Контролируемые	Код контролируемой	Наименование
п/п	разделы (темы)	компетенции (или её части) / и	оценочного
	дисциплины	ее формулировка	средства
	(результаты по		
	разделам)		
1.	Дифференциальны е и интегральные уравнения	Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в инженерной деятельности, связанной с проектированием и конструированием, технологиями производства приборов и комплексов широкого назначения (ОПК-1)	Контрольная работа 1
2.	Вариационное исчисление	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач (УК-1), Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений (УК-2)	Контрольная работа 2
	Экзамен	Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в инженерной деятельности, связанной с проектированием и конструированием, технологиями производства приборов и комплексов широкого назначения (ОПК-1)	Экзаменационны й билет
	Всего: контрольная 1, 2, экзамен.		

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Конечными результатами освоения программы дисциплины являются сформированные когнитивные дескрипторы «знать», «уметь», «владеть», расписанные по отдельным компетенциям, которые приведены в п.1.1. Формирование этих дескрипторов происходит в процессе изучения дисциплины по этапам в рамках различного вида учебных занятий и самостоятельной работы.

Выделяются три уровня сформированности компетенций на каждом этапе: пороговый, продвинутый и высокий.

Уровни	Содержательное описание уровня	Основные признаки выделения уровня	БРС, % освоения	ECTS/Пятибалльная шкала для оценки экзамена/зачета
Высокий Все виды компетенций сформированы на высоком уровне в соответствии с целями и задачами дисциплины	Творческая деятельность	Включает нижестоящий уровень. Студент демонстрирует свободное обладание компетенциями, способен применить их в нестандартных ситуациях: показывает умение самостоятельно принимать решение, решать проблему/задачу теоретического или прикладного характера на основе изученных методов, приемов, технологий	90-100	А/ Отлично/ Зачтено
Продвинутый Все виды компетенций сформированы на продвинутом уровне в соответствии с целями и	Применение знаний и умений в более широких контекстах учебной и профессиональной деятельности, нежели по	Включает нижестоящий уровень. Студент может доказать владение компетенциями: демонстрирует способность собирать, систематизировать, анализировать и грамотно использовать информацию из	85-89	В/ Очень хорошо/ Зачтено
задачами дисциплины	образцу, большей долей самостоятельности и инициативы	самостоятельно найденных теоретических источников и иллюстрировать ими теоретические положения или обосновывать практику применения.	75-84	С/ Хорошо/ Зачтено
Пороговый Все виды компетенций	Репродуктивная деятельность	Студент демонстрирует владение компетенциями в стандартных ситуациях:	65-74	D/Удовлетворительно/ Зачтено
сформированы на пороговом уровне		излагает в пределах задач курса теоретически и практически контролируемый материал.	60-64	Е/Посредственно /Зачтено
Ниже порогового		гового уровня: компетенции не сформированы. одемонстрировать обладание компетенциями в	0-59	Неудовлетворительно/ Зачтено

Оценивание результатов обучения студентов по дисциплине осуществляется по регламенту текущего контроля и промежуточной аттестации.

Критерии оценивания компетенций на каждом этапе изучения дисциплины для каждого вида оценочного средства и приводятся в п. 4 ФОС.Итоговый уровень сформированности компетенции при изучении дисциплины определяется по таблице. При этом следует понимать, что граница между уровнями для конкретных результатов освоения образовательной программы может смещаться.

Уровень сформированности	Текущийконтроль	Промежуточная аттестация
компетенции		
	высокий	высокий
высокий	продвинутый	высокий
	высокий	продвинутый
	пороговый	высокий
	высокий	пороговый
продвинутый	продвинутый	продвинутый
	продвинутый	пороговый
	пороговый	продвинутый
пороговый	пороговый	пороговый
WWW. W.	пороговый	ниже порогового
ниже порогового	ниже порогового	-

3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков или опыта деятельности, характеризующих этапы формирования компетенций.

Рейтинговая оценка знаний является интегральным показателем качества теоретических и практических знаний и навыков студентов по дисциплине и складывается из оценок, полученных в ходе текущего контроля и промежуточной аттестации.

Текущий контроль в семестре проводится с целью обеспечения своевременной обратной связи, для коррекции обучения, активизации самостоятельной работы студентов.

Промежуточная аттестация предназначена для объективного подтверждения и оценивания достигнутых результатов обучения после завершения изучения дисциплины.

Текущий контроль осуществляется два раза в семестр: контрольная точка № 1 (КТ № 1) и контрольная точка № 2 (КТ № 2).

Результаты текущего контроля и промежуточной аттестации подводятся по шкале балльно-рейтинговой системы.

Вид контроля	Этап рейтинговой системы Оценочное	Ба	ЛЛ
	средство	Минимум	Максимум
Текущий	Контрольная точка № 1	18	30
	Контрольная работа №1	18	30
	Контрольная точка № 2	18	30
	Контрольная работа №2	9	15
	Контрольная работа №3	9	15
Промежуточный	Экзамен	24	40
	Вопрос	5	10
	Задача	5	10
	Задача	7	10
	Задача	7	10
ИТОГО по дисциплине 60 100			100

Процедура оценивания знаний, умений, владений по дисциплине включает учет успешности по всем видам заявленных оценочных средств.

Тесты по разделам проводятся на практических занятиях и включают вопросы по предыдущему разделу. Баллы выставляются преподавателем в соответствии с утвержденной шкалой оценивания.

Устный опрос проводится на каждом практическом занятии и затрагивает как тематику прошедшего занятия, так и лекционный материал. Применяется групповое оценивание ответа или оценивание преподавателем.

По окончании освоения дисциплины проводится промежуточная аттестация в виде экзамена, что позволяет оценить совокупность приобретенных в процессе обучения компетенций. При выставлении итоговой оценки применяется балльно-рейтинговая система оценки результатов обучения.

Экзамен предназначен для оценки работы обучающегося в течение всего срока изучения дисциплины и призван выявить уровень, прочность и систематичность полученных обучающимся теоретических знаний и умений практического использования знаний (например, применять теоретические знания в решении задач), приобретения навыков самостоятельной работы, развития творческого мышления.

Оценка сформированности компетенций на экзамене для тех обучающихся, которые пропускали занятия и не участвовали в проверке компетенций во время изучения дисциплины, проводится после индивидуального собеседования с преподавателем по пропущенным или не усвоенным обучающимся темам.

4.Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков

4.1. Экзамен

а) типовые вопросы (задания): Экзаменационные билеты

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»	
Профиль	Приборы и методы контроля качества и диагностики	
Дисциплина Дифференциальные и интегральные уравнения		
	Билет № 1	
по дисциплине		
1. Примеры задач	г, приводящих к интегральным уравнениям.	
2. Вывод уравне	ния Эйлера для вариационной задачи с неподвижными границами.	
3. Задачи		
доцент ОПП	/Л.А. Королева/ «» 20 г.	

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»		
Профиль Дисциплина	<u> </u>		
	Билет № 2		
по дисциплине	еДифференциальные и интегральные уравнения		
1. Повторные ядр повторные ядра.	ра уравнения Фредгольма 2-го рода. Выражение резольвенты через		
h	условие достижения экстремума для функционала		
$v[y] = \int_{a}^{b} f(x, x)$	$(y, y') dx, y(a) = y_a, y(b) = y_b.$		
3. Задачи			
доцент ОПП	/Л.А. Королева/ «» 20 г.		

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	филь Приборы и методы контроля качества и диагностики		
Профиль Дисциплина			
	Билет № 3		
по дисциплине	е Дифференциальные и интегральные уравнения		
1. Резольвента уг	равнения Вольтерра 2 рода, выражение через повторные ядра.		
h	условие достижения экстремума для функционала		
$v[y] = \int_{a}^{b} f(x, y, y)$	$(y',,y^{(n)}) dx, y(a)=y_{a0}, y(b)=y_{b0},y^{(n-1)}(a)=y_{a,n-1},y^{(n-1)}=y_{b,n-1}.$		
3. Задачи			
доцент ОПП	/Л.А. Королева/ «» 20 г.		

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление 12.03.01 «Приборостроение»		
Профиль Приборы и методы контроля качества и диагностики		
Дисциплина	Дифференциальные и интегральные уравнения	
	Билет № 4	
Неймана для р	пьтерра 2 рода. Теорема существования и единственности решения. Ряд решения уравнения Вольтерра 2 рода. дионного исчисления. Функционалы. Нормы C, C_1, C_N .	
3. Задачи		
доцент ОПП	/Л.А. Королева/ «»20 г.	

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»	
Профиль Приборы и методы контроля качества и диагностики Дисциплина Дифференциальные и интегральные уравнения		
	Билет № 5	
по дисциплине	е	
1. Неоднородные	уравнения Фредгольма 2 рода с вырожденными ядрами.	
2. Преобразован	ие второй вариации функционала. Условие Лежандра.	
3. Задачи		
доцент ОПП	/Л.А. Королева/ «»20 г.	

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»		
Профиль	Ірофиль Приборы и методы контроля качества и диагностики		
Дисциплина _	Дифференциальные и интегральные уравнения		
	Билет № 6		
по дисциплине	<u>Дифференциальные и интегральные уравнения</u>		
_	уравнения Фредгольма 2 рода с непрерывными ядрами. Союзное ернативы Фредгольма (б. д.).		
b	условие достижения экстремума для функционала $(x, y(a) = y_a, y(b) = y_b)$		
3. Задачи			
доцент ОПП	/Л.А. Королева/ «» 20 г.		

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»
Профиль	Приборы и методы контроля качества и диагностики
Дисциплина	Дифференциальные и интегральные уравнения
	Билет № 7
по дисциплин	еДифференциальные и интегральные уравнения
1	уравнения Фредгольма 2 рода с непрерывным симметричным ядром.
b	условие достижения экстремума для функционала
$v[y] = \int_a f(x, y, y)$	$(y', z, z') dx, y(a) = y_a, y(b) = y_b, z(a) = z_a, z(b) = z_b.$
3. Задачи	
доцент ОПП	/Л.А. Королева/ «» 20 г.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»
Профиль	Приборы и методы контроля качества и диагностики
Дисциплина	Дифференциальные и интегральные уравнения
	Билет № 8
по дисциплине	<u>Дифференциальные и интегральные уравнения</u>
1. Неоднородные	уравнения Фредгольма 2 рода с симметричным непрерывным ядром.
2. Необходимое	условие достижения экстремума для функционала
$v[y] = \int_{a}^{b} f(x, y, y)$	$(y',,y^{(n)}) dx, y(a)=y_{a0}, y(b)=y_{b0},y^{(n-1)}(a)=y_{a,n-1},y^{(n-1)}=y_{b,n-1}.$
3. Задачи	
доцент ОПП	/Л.А. Королева/ «»20 г

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»
Профиль	Приборы и методы контроля качества и диагностики
Дисциплина	Дифференциальные и интегральные уравнения
	Билет № 9
по дисциплине	Дифференциальные и интегральные уравнения
1. Некорректность некорректных зада	уравнений Фредгольма 1-го рода. Метод А. Н. Тихонова решения ч.
2. Вторая вариаци	я функционала с фиксированными границами.
3. Задачи	
доцент ОПП	/Л.А. Королева/ «» 20 г.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»
Профиль	Приборы и методы контроля качества и диагностики
Дисциплина -	Дифференциальные и интегральные уравнения
	Билет № 10
по дисциплине	<u>Дифференциальные и интегральные уравнения</u>
1. Оператор Фр Фредгольма.	редгольма. Симметричность, полная непрерывность оператора
	словие достижения экстремума. Сильный и слабый экстремум. Вторая онала. Достаточное условие достижения слабого экстремума.
3. Задачи	
доцент ОПП	/Л.А. Королева/ «» 20 г.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»
Профиль	Приборы и методы контроля качества и диагностики
Дисциплина	Дифференциальные и интегральные уравнения
	Билет № 11
по дисциплин	е Дифференциальные и интегральные уравнения
1. Неоднородные	уравнения Фредгольма 2 рода. Решение при малых λ. Ряд Неймана.
2. Экстремум фу достижения экст	ункционала. Первая вариация функционала. Необходимое условие ремума.
3. Задачи	
доцент ОПП	/Л.А. Королева/«»20 г.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»	
Профиль	Приборы и методы контроля качества и диагностики	
Дисциплина	Дифференциальные и интегральные уравнения	
	Билет № 12	
по дисциплин	еДифференциальные и интегральные уравнения_	
	равнения Фредгольма с вырожденным непрерывным ядром. Свойства нкций и собственных значений.	
2. Задачи вариат	ционного исчисления. Функционалы. Нормы C, C_1, C_N .	
3. Задачи		
доцент ОПП	/Л.А. Королева/ «»20 г.	

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»	
Профиль	Приборы и методы контроля качества и диагностики	
Дисциплина _	Дифференциальные и интегральные уравнения	
	Билет № 13	
по дисциплине	Дифференциальные и интегральные уравнения	
1. Резольвента ура определения резол	авнения Фредгольма 2-го рода. Интегральное уравнение для львенты.	
h	условие достижения экстремума для функционала $(x, y, y,$	
доцент ОПП	/Л.А. Королева/ «»20 г.	

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»
— Профиль	Приборы и методы контроля качества и диагностикиПрограмма «Ядерные реакторы»
Дисциплина _	Дифференциальные и интегральные уравнения
	Билет № 14
по дисциплине	
1. Теорема Гильбе	ерта-Шмидта (б. д).
2. Достаточное ус	словие достижения слабого экстремума для функционала
$v[y] = \int_{a}^{b} f(x, y, y)$	$(x, y(a)=y_a, y(b)=y_b.$
3. Задачи	
доцент ОПП	/Л.А. Королева/ «» 20 г.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»
Профиль	Приборы и методы контроля качества и диагностики
Дисциплина _	Дифференциальные и интегральные уравнения
	Билет № 15
по дисциплине	е Дифференциальные и интегральные уравнения
	гвенных функций и собственных значений уравнения Фредгольма 2 рода имметричным ядром.
2. Необходимое	е условие достижения экстремума для функционала
$v[y] = \int_{a}^{b} f(x, y)$	$(y, y') dx, y(a) = y_a, y(b) = y_b.$
3. Задачи	
доцент ОПП	/Л.А. Королева/ «»20 г.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»	
Профиль	Приборы и методы контроля качества и диагностики	
Дисциплина _	Дифференциальные и интегральные уравнения	
	Билет № 16	
по дисциплине	<u>Дифференциальные и интегральные уравнения</u>	
1. Корректность з	вада (по Адамару). Примеры корректных и некорректных задач.	
2. Экстремум фу достижения экстр	нкционала. Первая вариация функционала. Необходимое условие ремума.	
3. Задачи		
доцент ОПП	/Л.А. Королева/ «» 20 г.	

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»
Профиль Дисциплина	Приборы и методы контроля качества и диагностики Дифференциальные и интегральные уравнения
	Билет № 17
по дисциплине	еДифференциальные и интегральные уравнения
1. Задачи на собс рода с вырожден	твенные значения и функции для однородных уравнений Фредгольма 2 ным ядром.
 Задачи с подві Задачи 	ижной границей. Условие трансверсальности.
доцент ОПП	/Л.А. Королева/ «» 20 г.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»	
Профиль	Приборы и методы контроля качества и диагностики	
Дисциплина .	Дифференциальные и интегральные уравнения	
	Билет № 18	
по дисциплине	<u>Дифференциальные и интегральные уравнения</u>	
1. Уравнения Фро	едгольма 2 рода. Постановка основных задач.	
h	условие достижения экстремума для функционала $y',,y^{(n)}$) dx , $y(a)=y_{a0}$, $y(b)=y_{b0}$, $y^{(n-1)}(a)=y_{a,n-1}$, $y^{(n-1)}=y_{b,n-1}$.	
доцент ОПП	/Л.А. Королева/ «» 20 г.	

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»		
Профиль	Приборы и методы контроля качества и диагностики		
Дисциплина	Дифференциальные и интегральные уравнения		
	Билет № 19		
по дисциплине Дифференциальные и интегральные уравнения			
1. Прикладные задачи, приводящие к интегральным уравнениям.			
2. Необходимое условие достижения экстремума для функционала			
$v[y] = \int_{a}^{b} f(x, y, y',, y'^{(n)}) dx, y(a) = y_{a0}, y(b) = y_{b0},, y^{(n-1)}(a) = y_{a,n-1}, y^{(n-1)} = y_{b,n-1}.$			
3. Задачи			
доцент ОПП	/Л.А. Королева/ «» 20 г.		

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики -

Направление	12.03.01 «Приборостроение»			
Профиль	Приборы и методы контроля качества и диагностики			
Дисциплина	Дифференциальные и интегральные уравнения			
	Билет № 20			
по дисциплине	е Дифференциальные и интегральные уравнения			
1. Однородные уравнения Фредгольма 2 рода с вырожденным ядром. Нахождение собственных значений и собственных функций.				
2. Экстремум функционала. Первая вариация функционала. Необходимое условие достижения экстремума.				
3. Задачи				
доцент ОПП	/Л.А. Королева/ «»20 г.			

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

Направление	12.03.01 «Приборостроение»		
Профиль Дисциплина	Приборы и методы контроля качества и диагностики Дифференциальные и интегральные уравнения		
	Билет № 21		
по дисциплине	<u>Дифференциальные и интегральные уравнения</u>		
1. Классификация интегральных уравнений.			
2. Необходимое условие достижения экстремума для функционала $v[y] = \int_a^b f(x,y,y,y,,y^{(n)}) \ dx, \ y(a) = y_{a0}, \ y(b) = y_{b0},y^{(n-1)}(a) = y_{a,n-1}, y^{(n-1)} = y_{b,n-1}.$ 3. Задачи			
доцент ОПП	/Л.А. Королева/ «»20 г		

б) критерии оценивания компетенций (результатов):

Отлично/хорошо/удовлетворительно/неудовлетворительно

в) описание шкалы оценивания:

Допуск к экзамену по дисциплине осуществляется при количестве набранных в течение семестра баллов равно и/или более 35 и всех выполненных заданиях.

За семестр студент может набрать от 35 до 60 баллов.

Оценка	Критерии оценки
Отлично	Студент должен:
36-40	- продемонстрировать глубокое и прочное усвоение знаний программного материала;
	- исчерпывающе, последовательно, грамотно и логически стройно изложить теоретический материал;
	- правильно формулировать определения;
	- продемонстрировать умения самостоятельной работы с литературой;
	- уметь сделать выводы по излагаемому материалу.
Хорошо	Студент должен:
30-35	- продемонстрировать достаточно полное знание программного материала;
	- продемонстрировать знание основных теоретических понятий;
	достаточно последовательно, грамотно и логически стройно излагать материал;
	- продемонстрировать умение ориентироваться в литературе;
	- уметь сделать достаточно обоснованные выводы по излагаемому материалу.
Удовлетворительно	Студент должен:
25-29	- продемонстрировать общее знание изучаемого материала;
	- показать общее владение понятийным аппаратом дисциплины;
	- уметь строить ответ в соответствии со структурой излагаемого вопроса;
	- знать основную рекомендуемую программой учебную литературу.
Неудовлетворительно	Студент демонстрирует:
24 и меньше	- незнание значительной части программного материала;
	- не владение понятийным аппаратом дисциплины;
	- существенные ошибки при изложении учебного материала;
	- неумение строить ответ в соответствии со структурой излагаемого вопроса;
	- неумение делать выводы по излагаемому материалу.

Министерство образования и науки российской федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Комплект заданий для контрольной работы 1 (интегралы, зависящие от параметра)

по дисциплине

Дифференциальные и интегральные уравнения

Вариант 1

1. Решить неоднородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = \lambda \int_{-2}^{2} (xt + x^{3}t^{3})y(t)dt + x^{2}$$

2. Решить однородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = \lambda \int_{-\pi}^{\pi} \sin(x+t)y(t)dt$$

3. Решить уравнение Фредгольма с симметричным ядром. (9 баллов)

$$y(x) = 2 \int_{0}^{\pi/2} K(x,t)y(t)dt + \cos 3x \qquad \sin x \cos t \qquad x \quad t0 \le \le K(x,t) = \sin t \cos x \quad t \quad x \le \le \pi/2$$

. Построить резольвенту для неоднородного уравнения Фредгольма второго рода и записать решение этого уравнения через резольвенту.

Ядро
$$\sin(x-0.5t)$$
 $0 \le x \le 4\pi; 0 \le t \le 4\pi;$ (5 баллов)

Вариант 2

1. Решить неоднородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = 3\int_{0}^{\pi} (2\sin x \cos t + \cos x \sin t)y(t)dt + 5$$

2. Решить однородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = \lambda \int_{0}^{\pi} (2\sin x \mathbb{E}\cos t + \cos x \mathbb{E}\sin t)y(t)dt$$

3. Решить уравнение Фредгольма с симметричным ядром. (10 баллов)

$$y(x) = 3 \int_{0}^{\frac{\pi}{2}} K(x,t)y(t)dt + \cos 4x \qquad \sin x \cos x \qquad x \quad t0 \le \le K(x,t) = \sin x \cos x \qquad t \qquad x \le \le \pi/2$$

4. Построить резольвенту для неоднородного уравнения Фредгольма второго рода и записать решение этого уравнения через резольвенту.

Ядро
$$\cos(0.5x+t)$$
 $0 \le x \le 2\pi; 0 \le t \le 2\pi;$ (5 баллов)

Вариант 3

1. Решить неоднородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = 3\int_{0}^{\pi} (2\sin x \cos t + \cos x \sin t)y(t)dt + \cos x$$

2. Решить однородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = \lambda \int_{0}^{\pi} (6\sin x \mathbb{I}\cos t + \cos x \mathbb{I}\sin t)y(t)dt$$

3. Решить уравнение Фредгольма с симметричным ядром. (10 баллов)

$$y(x) = 4 \int_{0}^{1} K(x,t)y(t)dt + x \qquad \text{where } 1 = t \text{ (and } 1) \qquad x \quad t \quad 0 \le t \le t \text{ (and } 1) = t \text{$$

4. Построить резольвенту для неоднородного уравнения Фредгольма второго рода и записать решение этого уравнения через резольвенту.

Ядро
$$\sin(3x-2t)$$
 $0 \le x \le 2\pi; 0 \le t \le 2\pi; (5 баллов)$

Вариант 4

1. Решить неоднородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = 3\int_{0}^{\pi} (2\sin x \cos t + \cos x \sin t)y(t)dt + \sin x$$

2. Решить однородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = \lambda \int_{0}^{\pi} (10\sin x \cos t + \cos x \sin t) y(t) dt$$

3. Решить уравнение Фредгольма с симметричным ядром. (10 баллов)

$$y(x) = 3 \int_{0}^{1} K(x,t)y(t)dt + xe^{x}$$

$$K(x,t) = \frac{shx sh(t-1)}{sh1} ecnu \quad 0 \le x \le t$$

$$K(x,t) = \frac{sht sh(x-1)}{sh1} ecnu \quad t \le x \le 1$$

4. Построить резольвенту для неоднородного уравнения Фредгольма второго рода и записать решение этого уравнения через резольвенту.

Ядро
$$\cos(0.5x+t)$$
 $0 \le x \le 2\pi; 0 \le t \le 2\pi;$ (5 баллов)

Вариант 5

1. Решить неоднородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = 3\int_{-2}^{2} (xt + x^2t^2)y(t)dt + x$$

2. Решить однородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = \lambda \int_{0}^{1} (2 + x \mathbb{M}) y(t) dt$$

3. Решить уравнение Фредгольма с симметричным ядром. (10 баллов)

$$y(x) = 2 \int_{-\pi/4}^{\pi/4} K(x,t)y(t)dt + \cos 2x \qquad \sin(x \cos \pi/4) \sin(t - \pi/4) \qquad -\pi/4 \le \le K(x,t) = \sin(x \cos \pi/4) \sin(x - \pi/4) \qquad \le \le \pi/4$$

4. Построить резольвенту для неоднородного уравнения Фредгольма второго рода и записать решение этого уравнения через резольвенту.

Ядро
$$\sin(x + \frac{1}{3}t)$$
 $0 \le x \le 6\pi; 0 \le t \le 6\pi;$ (5 баллов)

Вариант 6

1. Решить неоднородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = 3\int_{-2}^{2} (xt^2 + x^2t)y(t)dt + 1 + x^2$$

2. Решить однородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = \lambda \int_{0}^{1} (t + x \mathcal{U}^{2}) y(t) dt$$

3. Решить уравнение Фредгольма с симметричным ядром. (10 баллов)

$$y(x) = 2 \int_{0}^{\pi/2} K(x,t)y(t)dt + \cos 2x \qquad \sin x \cos x \quad x \quad t0 \le \le K(x,t) = \sin t \cos x \quad t \quad x \le \le \pi/2$$

4. Построить резольвенту для неоднородного уравнения Фредгольма второго рода и записать решение этого уравнения через резольвенту.

Ядро
$$\cos(x + \frac{1}{4}t)$$
 $0 \le x \le 8\pi; 0 \le t \le 8\pi;$ (5 баллов)

Вариант 7

1. Решить неоднородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = 4 \int_{0}^{2} (xt^{2} + x^{2}t)y(t)dt + (x-1)^{2}$$

2. Решить однородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = \lambda \int_0^1 (1 + x^2 \mathcal{U}^2) y(t) dt$$

3. Решить уравнение Фредгольма с симметричным ядром. (10 баллов)

$$y(x) = 3 \int_{0}^{\pi/2} K(x,t)y(t)dt + \cos 2x \qquad \sin x \cos t \qquad x \quad t0 \le \le K(x,t) = \sin x \cos x \quad t \quad x \le \le \pi/2$$

4. Построить резольвенту для неоднородного уравнения Фредгольма второго рода и записать решение этого уравнения через резольвенту.

Ядро
$$\sin(1.5x + 0.5t)$$
 $0 \le x \le 4\pi$; $0 \le t \le 4\pi$; (5 баллов)

Вариант 8

1. Решить неоднородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = 2\int_{1}^{1} (xt^{2} + x^{2}t)y(t)dt + 5 - x^{2}$$

2. Решить однородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = \lambda \int_0^1 (x + x^2 t^2) y(t) dt$$

3. Решить уравнение Фредгольма с симметричным ядром. (10 баллов)

$$y(x) = 4 \int_{0}^{\pi/2} K(x,t)y(t)dt + \sin 2x \qquad \qquad \sin x \cos t \qquad x \quad t0 \le \le K(x,t) = \sin x \cos x \quad t \quad x \qquad \le \le \pi/2$$

4. Построить резольвенту для неоднородного уравнения Фредгольма второго рода и записать решение этого уравнения через резольвенту.

Ядро
$$\sin(x+0.5t)$$
 $0 \le x \le 4\pi$; $0 \le t \le 4\pi$; (5 баллов)

Вариант 9

1. Решить неоднородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = \int_{0}^{1} (xe^{t} + e^{x}t)y(t)dt + e^{x}$$

2. Решить однородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = \lambda \int_{-2}^{2} (x \mathbb{I} + x^2 \mathbb{I}^2) y(t) dt$$

3. Решить уравнение Фредгольма с симметричным ядром. (10 баллов)

$$y(x) = 5 \int_{0}^{1} K(x,t)y(t)dt + x \qquad \text{with } 1) \qquad x \quad t \quad 0 \le \quad \le 1$$

$$K(x,t) = \text{with } 1)t \quad x \quad \le \quad \le 1$$

4. Построить резольвенту для неоднородного уравнения Фредгольма второго рода и записать решение этого уравнения через резольвенту.

Ядро
$$\cos(2x+t)$$
 $0 \le x \le 2\pi; 0 \le t \le 2\pi; (5 баллов)$

Вариант 10

1. Решить неоднородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = 5 \int_{-1}^{1} (xt^3 + x^3t)y(t)dt + 5 - x^4$$

2. Решить однородное уравнение Фредгольма с вырожденным ядром. (5 баллов)

$$y(x) = \lambda \int_{-2}^{2} (x \mathbb{M}^2 + x^2 \mathbb{M}) y(t) dt$$

3. Решить уравнение Фредгольма с симметричным ядром. (10 баллов)

$$y(x) = -3 \int_{0}^{2} K(x,t)y(t)dt + x^{2} \qquad \text{with } 2) \qquad x \quad t \quad 0 \le \quad \le$$

$$K(x,t) = \text{vicinit } 2t \quad x \quad \qquad \le \quad \le 2$$

4. Построить резольвенту для неоднородного уравнения Фредгольма второго рода и записать решение этого уравнения через резольвенту.

Ядро
$$\cos(2x+t)$$
 $0 \le x \le 2\pi; 0 \le t \le 2\pi;$ (5 баллов)

- б) критерии оценивания компетенций (результатов):
- уровень освоения обучающимся материала, предусмотренного учебной программой;
- умение обучающегося использовать теоретические знания при выполнении заданий и задач;
- обоснованность, четкость, краткость изложения ответа.

в) описание шкалы оценивания:

25-30 баллов ставится, если:

- изученный материал изложен полно, определения даны верно;
- ответ показывает понимание материала;
- обучающийся может обосновать свои суждения, применить знания на практике, привести необходимые примеры, не только по учебнику и конспекту, но и самостоятельно составленные.

18-24 баллов ставится, если:

- изученный материал изложен достаточно полно;
- при ответе допускаются ошибки, заминки, которые обучающийся в состоянии исправить самостоятельно при наводящих вопросах;
- обучающийся затрудняется с ответами на 1-2 дополнительных вопроса.

15-17 баллов ставится, если:

- материал изложен неполно, с неточностями в определении понятий или формулировке определений;
- материал излагается непоследовательно;
- -обучающийся не может достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры;
- на 50% дополнительных вопросов даны неверные ответы.

0-14 баллов ставится, если:

- при ответе обнаруживается полное незнание и непонимание изучаемого материала;
- материал излагается неуверенно, беспорядочно;
- даны неверные ответы более чем на 50% дополнительных вопросов.

Министерство образования и науки российской федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики -

филиал федерального государственного автономного образовательного учреждения высшего

Комплект заданий для контрольной работы 2(Вариационные исчисление)

по дисциплине

Дифференциальные и интегральные уравнения

Вариант 1

1.(6 баллов) Решить уравнение Вольтерра, сведя его к дифференциальному уравнению

$$y(x) = 5 + \int_{0}^{x} \frac{2t+1}{2x+1} y(t) dt.$$

2.(6 баллов) Найти резольвенту для уравнения Вольтерра и записать решение неоднородного уравнения Вольтера второго рода через резольвенту. Ядро уравнения Вольтерра

$$K(x,t) = e^{x^2 - t^2}$$
.

3.(6 баллов) Найти экстремаль функционала

$$v[y] = \int_0^1 e^{-4x} (y'^2 + 2yy' - 7y^2 + ye^{5x}) dx, y(0) = 0, y(1) = 1.$$

4.(6 баллов) Найти экстремали функционала

$$v[y,z] = \int_0^1 (y'^2 + z'^2 + 2y^2 + 8byz + 8z^2) dx.$$

5. (6 баллов) Найти экстремали функционала

$$v[y] = \int_0^1 (4y^2 + 5y'^2 + y''^2 + yx) dx.$$

Вариант 2

1. (6 баллов) Решить уравнение Вольтерра, сведя его к дифференциальному уравнению.

$$y(x) = x + \int_{0}^{x} \frac{t+3}{x+3} y(t)dt.$$

2.(6 баллов) Найти резольвенту для уравнения Вольтера и записать решение неоднородного уравнения Вольтерра второго рода через резольвенту. Ядро уравнения Вольтерра

$$K(x,t) = \frac{1+x^2}{1+t^2}.$$

3. (6 баллов) Найти экстремаль функционала

$$v[y] = \int_0^1 e^{4x} (y'^2 + 2yy' + y^2 + ye^{2x}) dx, y(0) = 0, y(1) = 1.$$

4. (6 баллов) Найти экстремали функционала

$$v[y,z] = \int_0^1 (y'^2 + z'^2 + 4y^2 + 4yz + 8z^2) dx.$$

5. (6 баллов) Найти экстремали функционала

$$v[y] = \int_0^1 (4y^2 - 3y'^2 + y''^2 + yx) dx.$$

Вариант 3

1. (6 баллов) Решить уравнение Вольтерра, сведя его к дифференциальному уравнению.

$$y(x) = x^2 - \int_0^x e^{x-t} y(t) dt.$$

2. (6 баллов) Найти резольвенту для уравнения Вольтера и записать решение неоднородного уравнения Вольтерра второго рода через резольвенту. Ядро уравнения Вольтерра

$$K(x,t)=2^{x-t}.$$

3. (6 баллов) Найти экстремаль функционала

$$v[y] = \int_0^1 e^{-2x} (y'^2 + 2yy' + y^2 + yx) dx, y(0) = 0, y(1) = 1.$$

4. (6 баллов) Найти экстремали функционала

$$v[y,z] = \int_0^1 (y'^2 + z'^2 + 6y^2 + 4yz + 6z^2) dx.$$

5. (6 баллов) Найти экстремали функционала

$$v[y] = \int_0^1 (-4y^2 + 3y'^2 + y''^2 + yx) dx.$$

Вариант 4

1. (6 баллов) Решить уравнение Вольтерра, сведя его к дифференциальному уравнению

$$y(x) = x + 1 + \int_{0}^{x} e^{2(x-t)} y(t) dt.$$

2.(6 баллов) Найти резольвенту для уравнения Вольтера и записать решение неоднородного уравнения Вольтерра второго рода через резольвенту. Ядро уравнения Вольтерра

$$K(x,t) = \frac{3 + 2\cos x}{3 + 2\cos t}.$$

3. (6 баллов) Найти экстремаль функционала

$$v[y] = \int_0^1 e^{-6x} (y'^2 + 2yy' - 11y^2 + 2yx) dx, y(0) = 0, y(1) = 1.$$

4. (6 баллов) Найти экстремали функционала

$$v[y,z] = \int_0^1 (y'^2 + z'^2 + 12y^2 + 24yz + 10z^2) dx.$$

5. (6 баллов) Найти экстремали функционала

$$v[y] = \int_0^1 (4y^2 - 5y'^2 + y''^2 + yx) dx.$$

Вариант 5

1. (6 баллов) Решить уравнение Вольтерра, сведя его к дифференциальному уравнению.

$$y(x) = e^x + \int_0^x e^{2(x-t)} y(t) dt.$$

2. (6 баллов) Найти резольвенту для уравнения Вольтера и записать решение неоднородного уравнения Вольтерра второго рода через резольвенту. Ядро уравнения Вольтерра

$$K(x,t) = \frac{1+x}{1+t}.$$

3. (6 баллов) Найти экстремаль функционала

$$v[y] = \int_0^1 e^{6x} (y'^2 + 2yy' - 2y^2 + 3y) dx, y(0) = 0, y(1) = 1.$$

4. (6 баллов) Найти экстремали функционала

$$v[y,z] = \int_0^1 (y'^2 + z'^2 + 14y^2 + 20yz + 10z^2) dx.$$

5. (6 баллов) Найти экстремали функционала

$$v[y] = \int_0^1 (-36y^2 - 5y'^2 + y''^2 + yx) dx.$$

Вариант 6

1. (6 баллов) Решить уравнение Вольтерра, сведя его к дифференциальному уравнению

$$y(x) = 2^{x} + \int_{0}^{x} 2^{(x-t)} y(t) dt.$$

2. (6 баллов) Найти резольвенту для уравнения Вольтера и записать решение неоднородного уравнения Вольтерра второго рода через резольвенту. Ядро оператора Вольтерра

$$K(x,t) = \frac{1 + shx}{1 + sht}.$$

3. (6 баллов) Найти экстремаль функционала

$$v[y] = \int_0^1 e^{2x} (y'^2 + 2yy' + 17y^2 + 3y) dx, y(0) = 0, y(1) = 1.$$

4. (6 баллов) Найти экстремали функционала

$$v[y,z] = \int_0^1 (y'^2 + z'^2 + 12y^2 - 4yz + 24z^2) dx.$$

5. (6 баллов) Найти экстремали функционала

$$v[y] = \int_0^1 (9y^2 + 10y'^2 + y''^2 + yx) dx.$$

Вариант 7

1. (6 баллов) Решить уравнение Вольтерра, сведя его к дифференциальному уравнению

$$y(x) = e^x + \int_{0}^{x} e^{(x-t)} y(t) dt.$$

2. (6 баллов) Найти резольвенту для уравнения Вольтера и записать решение неоднородного уравнения Вольтерра второго рода через резольвенту. Ядро оператора Вольтерра

$$K(x,t) = \frac{1+x^2}{1+t^2}.$$

3. (6 баллов) Найти экстремаль функционала

$$v[y] = \int_0^1 e^{6x} (y'^2 + 2yy' + y^2 + 3y) dx, y(0) = 0, y(1) = 2.$$

4. (6 баллов) Найти экстремали функционала

$$v[y,z] = \int_0^1 (y'^2 + z'^2 + 14y^2 - 8yz + 24z^2) dx.$$

5. (6 баллов) Найти экстремали функционала

$$v[y] = \int_0^1 (9y^2 - 10y'^2 + y''^2 + yx) dx.$$

Вариант 8

1. (6 баллов) Решить уравнение Вольтерра, сведя его к дифференциальному уравнению

$$y(x) = 3^{x} + \int_{0}^{x} 3^{(2x-2t)} y(t) dt.$$

2. (6 баллов) Найти резольвенту для уравнения Вольтера и записать решение неоднородного уравнения Вольтерра второго рода через резольвенту. Ядро оператора Вольтерра

$$K(x,t) = \frac{1 + shx + 2chx}{1 + sht + 2cht}.$$

3. (6 баллов) Найти экстремаль функционала

$$v[y] = \int_0^1 e^{4x} (y'^2 + 2yy' + 25y^2 + ye^x) dx, y(0) = 0, y(1) = 1.$$

4. (6 баллов) Найти экстремали функционала

$$v[y,z] = \int_0^1 (y'^2 + z'^2 + 16y^2 + 16yz + 10z^2) dx.$$

5. (6 баллов) Найти экстремали функционала

$$v[y] = \int_0^1 (-9y^2 - 8y'^2 + y''^2 + yx) dx.$$

Вариант 9

1. (6 баллов) Решить уравнение Вольтерра, сведя его к дифференциальному уравнению

$$y(x) = 1 - x + \int_{0}^{x} e^{4(x-t)} y(t) dt.$$

2. (6 баллов) Найти резольвенту для уравнения Вольтера и записать решение неоднородного уравнения Вольтерра второго рода через резольвенту. Ядро оператора Вольтерра

$$K(x,t) = \frac{1+2chx}{1+2cht}.$$

3. (6 баллов) Найти экстремаль функционала

$$v[y] = \int_0^1 e^{10x} (y'^2 + 2yy' - 14y^2 + ye^x) dx, y(0) = 0, y(1) = 1.$$

4. (6 баллов) Найти экстремали функционала

$$v[y,z] = \int_0^1 (y'^2 + z'^2 + 10y^2 + 28yz + 10z^2) dx.$$

5. (6 баллов) Найти экстремали функционала

$$v[y] = \int_0^1 (-9y^2 + 8y'^2 + y''^2 + yx) dx.$$

Вариант 10

1. (6 баллов) Решить уравнение Вольтерра, сведя его к дифференциальному уравнению.

$$y(x) = 1 - x + \int_{0}^{x} e^{4(t-x)} y(t) dt.$$

2. (6 баллов) Найти резольвенту для уравнения Вольтера и записать решение неоднородного уравнения Вольтерра второго рода через резольвенту. Ядро оператора Вольтерра

$$K(x,t) = \frac{x + 2chx}{t + 2cht}.$$

3. (6 баллов) Найти экстремаль функционала

$$v[y] = \int_0^1 e^{10x} (y'^2 + 2yy' - 14y^2 + ye^{2x}) dx, y(0) = 0, y(1) = 1.$$

4. (6 баллов) Найти экстремали функционала

$$v[y,z] = \int_0^1 (y'^2 + z'^2 + 10y^2 + 28yz + 10z^2) dx.$$

5. (6 баллов) Найти экстремали функционала

$$v[y] = \int_0^1 (-9y^2 + 8y'^2 + y''^2 + yx) dx.$$

- б) критерии оценивания компетенций (результатов):
- уровень освоения обучающимся материала, предусмотренного учебной программой;
- умение обучающегося использовать теоретические знания при выполнении заданий и задач;
- обоснованность, четкость, краткость изложения ответа.
 - в) описание шкалы оценивания:

25-30 баллов ставится, если:

- изученный материал изложен полно, определения даны верно;
- ответ показывает понимание материала;
- обучающийся может обосновать свои суждения, применить знания на практике, привести необходимые примеры, не только по учебнику и конспекту, но и самостоятельно составленные.

18-24 баллов ставится, если:

- изученный материал изложен достаточно полно;
- при ответе допускаются ошибки, заминки, которые обучающийся в состоянии исправить самостоятельно при наводящих вопросах;
- обучающийся затрудняется с ответами на 1-2 дополнительных вопроса.

15-17 баллов ставится, если:

- материал изложен неполно, с неточностями в определении понятий или формулировке определений;
- материал излагается непоследовательно;
- -обучающийся не может достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры;
- на 50% дополнительных вопросов даны неверные ответы.

0-14 баллов ставится, если:

- при ответе обнаруживается полное незнание и непонимание изучаемого материала;
- материал излагается неуверенно, беспорядочно;
- даны неверные ответы более чем на 50% дополнительных вопросов.

Фонд оценочных средств составлен в соответствии с образовательным стандартом высшего образования НИЯУ МИФИ по направлению подготовки 12.03.01 Приборостроение.

Фонд оценочных средств соста	авила:
	Л.А. Королева доцент кафедры ВМ, к.фм.н.,доц